a2 United States Patent

Alles

US009194892B2

US 9,194,892 B2
Nov. 24, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)
")

@

(22)

(65)

(1)

(52)

(58)

MATCHING POSITIVE TRANSITIONS IN A
TIME TRACE DISAGGREGATION PROCESS

Inventor: Harold Gene Alles, L.ake Oswego, OR
(US)

Assignee: VERLITICS LLC, Portland, OR (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 658 days.

Appl. No.: 13/601,071

Filed: Aug. 31,2012

Prior Publication Data
US 2014/0067292 Al Mar. 6, 2014
Int. CI.
GOIR 19/165 (2006.01)
GOIR 21/00 (2006.01)
GOIR 1925 (2006.01)
H02J 13/00 (2006.01)
HO02J 3/14 (2006.01)
HO02J 3/00 (2006.01)
U.S. CL
CPC ..o GOIR 19/2513 (2013.01); H02J 3/00

(2013.01); H02J 3/14 (2013.01); H02.J 13/0006
(2013.01); Y04S 20/224 (2013.01)

Field of Classification Search

CPC ... HO2J 3/00; HO02J 3/14; HO2J 13/0006;
Y04S 20/224

USPC ... 702/60, 61, 64, 65, 66, 67, 189; 706/54;
7151772

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,858,141 A 8/1989 Hart et al.

5,216,623 A 6/1993 Barrett et al.

5,483,153 A 1/1996 Leeb et al.

5,572,438 A 11/1996 Ehlers et al.

5,706,191 A 1/1998 Bassett et al.

6,438,472 B1* 82002 Tanoetal. ... 701/29.6

6,470,283 Bl 10/2002 Edel

6,868,293 Bl 3/2005 Schurr et al.

6,906,617 Bl 6/2005 Van der Meulen

6,983,210 B2 1/2006 Matsubayashi et al.

7,170,052 B2* 1/2007 Furutani etal. 250/287

7,174,260 B2 2/2007 Tuff et al.

7,246,014 B2 7/2007 Forth et al.

7,343,226 B2 3/2008 Ehlers et al.

7,379,997 B2 5/2008 Ehlers et al.

7,423,546 Bl 9/2008 Aisa

7,460,930 B1 12/2008 Howell et al.

8,275,561 B2* 9/2012 Alles ..ccoocovvevcvinvieieeninns 702/61

8,825414 B2* 9/2014 Garvey et al. . 702/34
2005/0230615 Al* 10/2005 Furutani etal. . .. 250/287
2010/0191487 Al* 7/2010 Radaetal.ccoouenne. 702/60
2010/0287485 Al* 11/2010 Bertolami et al. ... 715/764
2011/0101956 Al* 5/2011 Thorn 324/76.11
2014/0019072 Al* 1/2014 Allesooovvvvevivrnninns 702/60
2014/0062456 Al* 3/2014 Allescccoovvvvevvvvnnnnnns 324/86

* cited by examiner

Primary Examiner — Carol S Tsai

57 ABSTRACT

A method can include detecting a positive transition in a time
trace disaggregation process (1T TDP), creating a new instance
J, capturing a positive transition data block for the instance j,
creating a time trace feature description for power, reactive
power, and current, and matching the instance j to a device
type by performing a quick match based on at least one quick
match parameters. Responsive to a positive identification
based on the quick match, the instance j may be assigned to
the device type.

21 Claims, 21 Drawing Sheets

REFRIGERATOR POWER
200 602 POSITIVE STEP (1749)
(1749
1900 -Eoaag
bpy
1600 -
. 616 MAXIMUM NEGATIVE SLOPE (1433
1400 .f 624 MINIMUM S OP(E 11)93
L) 4 L
1200 2o pswevgy)
» e,
E 1000 2y
2 400 * FEATURE DESCRIPTION
[]
600 - FEATURE CODE SAMPLE VALUE
[. 661 END OF TRACE (199)
400
635 MAXIMUM NEGATIVE SLOPE (581) %eq, 4 POSITIVE STEP 6 2 1749
200 22220000 . - MAX NEG SLOPE 12 16 1433
~—B01 START OF TIME TRACE MIN SLOPE 11 24 1193
e L
1 6 1 16 21 26 3t s 41 (4% 51 56 MAX NEG SLOPE 12 35 581
SAMPLE NUMBER 650 CHECK POINT (206) | CHECK POINT 1 50 208
END OF TRACE 14 61 193

US 9,194,892 B2

Sheet 1 of 21

Nov. 24, 2015

U.S. Patent

Vi 9ld

UIGNNN F1dINVS
161 181 L4V 191 LGL Lyl LeL L2l LLL L0 b6 18 LL 19 IS ¥ e e L1)

(MO8} 1HOIT INFOSTHO T welffem
IAVMOUD N~

NV OVAH-

7 HOLYY ORI T i

L HOLYH IAOR AT Y wilfen

(uids) HOLOW WM <

US 9,194,892 B2

Sheet 2 of 21

Nov. 24, 2015

U.S. Patent

dlL ©Old

}IGINNN I 1dINVS

LS 6V LY Gy €V LY 6E LE GE €€ L€ 62 LZ GT €2 ¢ 61 LL Gl €1 1] m N m m

}

(o]
(@]
o
—

(14238 p1ey) HOLOW g

00ct

{usem) HOLOW WM —#e—
AHOIT INFOSIANYON] i

4

(1s4) LHOIT LINIOSTHO T =~
€ DINOY L0 i
L OINOE L2371 =

0091

(SLIVM) ¥3mMmod

US 9,194,892 B2

Sheet 3 of 21

Nov. 24, 2015

U.S. Patent

V¢ 9Old

L0Z 161 181 LAL Lol LGL vl el L2 LI LOL 16 18 L2 19

JIGINNN FT1dINVS

LG

v L€ 12 b}

* ':::E:E"

s
]

1
o
O
N

Q
(@]
q-

o
Q
©

o
-,
D
SdINV L0 ANV SLIVM

0001

HIAMOG IALLOVIY =
HIMOd —€—

0021

US 9,194,892 B2

Sheet 4 of 21

Nov. 24, 2015

U.S. Patent

dc¢ Ol

AIFGNNN ITdAVS

LG 6F LV QY €V L¥ 6€ L€ GE €€ LE 6C L G2 €C Lc 6L LLGLEL VL 6 L 6 € |

I S b I S NN NS SN N NS SENN NN NN SN SN SN SN NN GHNN N N SN BN SN S B S R SR S T S N N S N S TR BN SN A | S B -m%—I O

AIMOd IALLDVIY ~
HIMO ~dp

U.S. Patent Nov. 24, 2015 Sheet 5 of 21 US 9,194,892 B2

FIG 3A FEATURE MATCHING PROCESS l

i 301

Detect positive transition;
Capture positive transition data blocks for instance j

v

for power, reactive power, and current

| Create detailed feature description |~302
¢ 303

Use feature description to find match to generic device;
Determine quick match features;
ERRMIN = DEFAULTMIN

'L 304

For each device k
TERR = CalculateMatchError(j, k)

Is TERR < 305

DEVMIN[]?

Is TERR /
DEVMIN[K] <
ERRMIN?

306

3%7
ERRMIN = TERR / DEVMINIK]
DEV =k

310

s ERRMIN = 308

DEFAULTMIN?

Assign instance j to device DEV
ICNT[DEV] = {CNT[DEV] + 1

309
§

Create new device using instance j |

A B

<
<

U.S. Patent Nov. 24, 2015

FIG. 3B

ICNT[DEV] =
(100 or 500)?

Perform
CLUSTER
ANALYSIS

313

Split device DEV;

Sheet 6 of 21

(ICNT[DEV]
mod 10 = 0) and
(ICNT[DEV] <=
50)?

Yes

318

319

FIND BEST
SEED INSTANCE

Adjust DEVMIN] Js

315

Perform
CONSOLIDATION
ANALYSIS

Are there
devices to
consolidate into
DEV?

317

Consolidate devices;
Adjust DEVMIN[DEV]

316

>

US 9,194,892 B2

A AA

A

EXIT

U.S. Patent Nov. 24, 2015 Sheet 7 of 21 US 9,194,892 B2

LARGE POSITIVE SMALL POSITIVE POSITIVE 8QTEP

PEAK AR
& . &
A 413 i
’333 . 42\5‘ & 424
(1 oY 144 :
= = o4t 3
2 402 2 sz ° % 422
s % * -~ ®
‘v::g': .4{:’3‘3‘ :.;:
“m_gxm . P N N ;42? .
SAMPLE NUMBER SAMPLE NUMBER SAMPLE NUMBER
LARGE NEGATIVE SMALL NEGATIVE MNEGATIVE STEP
PEAK PEAK
A & &
4531 441 451
. 434 y % . *
= * SRR S5
= 432, : = 442 444 2 482
= ® = P = »
\‘:‘ £ ’ %
433w . 443 . 45309
SAMPLE NUMBER | SAMPLE NUMBER SAMPLE NUMBER
DECAY
4 8462
\ 463
Q:\
it - 454
= ®. 468
= ®. 465
b 487
481 T
I08 469 470 FIG. 4

SAMPLE NUMBER

U.S. Patent

YALUE

VALUE

Nov. 24, 2015 Sheet 8 of 21 US 9,194,892 B2

; HYSTERESIR

S MAXRUM

‘o 511
]

G512

O MU &

SAMPLE NUMBER
r 571

. 570 %
) 569 ®
BE2 @

. 5689/

L - MINIMUNM SLOPE

el MAKHMLIM
BES e mosITIVE

MAXIMLIM
e SH5 & SLOPE

NEGATIVE ..
SLOPE

£ 3

SAMPLE NUMBER

FIG. 5

US 9,194,892 B2

Sheet 9 of 21

Nov. 24, 2015

U.S. Patent

€61 19 142 A0Vl 40 AN3
902 0S } 1NIOd MO3HO
189 Ge gl 34018 93N XV
€6l1 ve b 34071S NIN
cerl 9l ¢l 3d0O1S OFN XV
6Ll [4 9 d3ls INLISOd
ANTVA INdNVS 3A0D FHNLV3S

NOILLdIYOS3a 3dN.Lv3S

9 'Ol

{902) LNIOd MOFHO 059 YISWNN T1dWVS
95 s o V i o€ te 9z iz 9 b 9 b
------—--..--—-—--.-.-.—--.-..-..-.-.--.----‘—I
\ 3OVYL ANIL 40 LYVLS 109—
foce, (189)
o, ,(185) 3d0TS IALLYOIN WNNIXVI SE9
®
“~(£61) FOVAL 40 AN 199 &
8
.
L4
5
o.oc
S8
E.C..‘d
(£611) IJOTS WNINININ $29—" o,
L]
(£€¥1) 3dOTS FAILYDIN WNWIXYN 919 ~—— @
ud...
Seogoee

(6741} d3LS JALLISOd 209 —

H3IMOd HOLY¥HIADI AT

0

00z
0op
009

008
s
>
oooL =
w

L4
00%1
0091
0081
000z

U.S. Patent

Nov. 24, 2015 Sheet 10 of 21 US 9,194,892 B2
FIG . 7A | FEATURE DESCRIPTION PROCESS
For power, reactive power, and current 701

For each sample j Y

Store check-point
triplet in BUFFER

£
Is
there a step
or peak
feature?

704

705

Store step or peak
triplet in BUFFER

y
Is there a

decay
feature?

706

707

Store decay triplet
in BUFFER

»
b

4

Is there a
minimum or
maximum feature?

708

709

Store min/max
triplet in BUFFER

.
L of

\\A\’,—’//

U.S. Patent Nov. 24, 2015 Sheet 11 of 21 US 9,194,892 B2

B N —

Is there a slope 710

feature?

~701

Store slope triplet
in BUFFER

=
P

| Store end of trace triplet in buffer]N712

4
[Sort feature in BUFFER by sample number }\‘713

For each feature
triplet k Y

Is feature 714

redundant?

| Remove redundant feature l

A 4 ¢

A4
| Store BUFFER in FEATURES[INSTNUM][] |~716

v

\ 4
‘ Store quick match parameters in FEATURES[INSTNUM][}»717

FIG. 7B

U.S. Patent Nov. 24, 2015 Sheet 12 of 21 US 9,194,892 B2

l MATCH INSTANCE INST TO GENERIC DEVICE PROCESS]

v

CALCULATE GENERIC PARAMETERS

MAXPOW
MAXTIME
MINPOW
MINTIME
CHECKPT[]
POWERFACTORT
POWERFACTOR?2
POWERFACTOR3
STARTOFSTABLE
PEAKCOUNT
STEPCOUNT
MINMAXOUNT 802

v ¢

For each generic device k

~801

803

{s MatchinstanceToGenericDevice(INST, k)
TRUE?

§
Return GENERIC DEVICE k }—

Is MINPOW > 805

LARGEPOW?

806

Return LARGE DEFAULT
GENERIC DEVICE

Is MINPOW <
SMALLPOW?

808

Return SMALL DEFAULT
GENERIC DEVICE g

809
\ 4 §
Return MEDIUM DEFAULT GENERIC DEVICE %

FIG. 8

U.S. Patent Nov. 24, 2015 Sheet 13 of 21

MatchinstanceToGenericDevice(INST, k)

Is MAXPOW >
MAXPOWMAXLIM[K]?

901 Yes

No

Is MAXPOW <
MAXPOWMINLIM[K]?

902 Yes

No

s MINPOW >
MINPOWMAXLIM[k]?

903 Yes

No

s MINPOW <
MINPOWMINLIM[Kk]?

No

905 Is POWERFACTOR1 >

POWERFACTORTMAXLIM[K]?

Yes

No

906 is POWERFACTOR1 <

POWERFACTOR1TMINLIM[K]?

Yes

No

{s PEAKCNT >
PEAKCNTMAXLIMK]?

No

FIG. 9A Q&

US 9,194,892 B2

| <

U.S. Patent Nov. 24, 2015 Sheet 14 of 21 US 9,194,892 B2

FIG. 9B 8

s PEAKCNT <
PEAKCNTMINLIM[K]?

908 Yes

Is STEPCNT >
STEPCNTMAXLIM[K]?

909

s STEPCNT <
STEPCNTMINLIM[k]?

910

911

while FEATURES[INSTI[j] Y
<> GENFEATURE[K][0} j=j+1

isj>
sizeof(FEATURESIINSTI[1)?

Yes

4

is FEATURE[INSTIj + 1] = 912

GENFEATURE[K][1]?

A4

s FEATURE[INST][j + 2] =
GENFEATURE[K][2]?

A
'

\4
RETURN TRUE RETURN FALSE

U.S. Patent Nov. 24, 2015 Sheet 15 of 21 US 9,194,892 B2

CalculateMatchError(, k) |

1001

b e

Do any quick match

values fail to match? Return DEFAULTMIN

Determine WEIGHT]] for power, reactive power, current
RERR = 0 and RWERR =0
For power, reactive power, and current

TERR = BIN error * BIN weight
WERR = BIN weight
For each feature jj of instance |

FERR = DEFAULTMIN 1004
For each feature kk of device k
TERR = FeatureMatch(jj, kk)

1003

FERR = TERR
MINKK = kk

1005

1006

TWERR = MatchErrorWeight(jj, MINKK)
TERR = TERR + FERR * TWERR
WERR = WERR + TWERR

Mark features jj and MINKK as used

v v
v

\A//

FIG. 10A

U.S. Patent

Nov. 24, 2015

Sheet 16 of 21

US 9,194,892 B2

A T

Y

1007

Is feature jj

marked as used?

For each feature jj of instance j

\ 4

Yes

TWERR = MisErrorWeight(jj)

FERR = MisFeatureMatch(jj)
TWERR = TERR + FERR * TWERR
WERR = WERR + TWERR

h 4

1008

Is feature kk

arked as used?

For each feature kk of device k

No

A 4

Yes

TWERR = MisErrorWeight(kk)
FERR = MisFeatureMatch(kk)
TWERR = TERR + FERR * TWERR
WERR = WERR + TWERR

Y

RERR = REPR + TERR * WEIGHT]]
RWERR = RWERR + WERR * WEIGHT[]

~ 1009

\ 4
Return square root(RERR) / RWERR

~ 1010

FIG. 10B

U.S. Patent Nov. 24, 2015 Sheet 17 of 21 US 9,194,892 B2

FIND BEST SEED INSTANCE for device DEV

1101
,

NUM =0
For k = 1 o number of instances

1102

Does DEVNUMK]
= DEV?

Yes 1103

NUM = NUM + 1
INSTNINUM] = k

v v

Forj=1to NUM
for k=1 to NUM

| MERRjJ[K] = CalculateMatchError2(INSTN[]], INSTN[K]) |

v

| MINERR = DEFAULTMIN |

v

Forj=1 1o NUM
TERR =0 1106
for k = 1 to NUM
| TERR = TERR + (MERRJj}[k] * MERRIJj}{k]) [

~ 1104

1105

| TERR = square root (TERR) / NUM 1107

Is TERR < 1108

MINERR?
1109

MINERR = TERR

NEWSEED = INSTNj]

y v

y
Use NEWSEED to specify DEV 1110

FIG. 11

U.S. Patent Nov. 24, 2015 Sheet 18 of 21 US 9,194,892 B2
]CLUSTER ANALYSIS for DEV 1201
5
] Fill array INSTN[] with instances numbers associated with device DEV |
I Fill array MERR]][] with match errors between all pairs of instances }’»1202
Forj=1to NUM
for k=1 to NUM ~1203
| D[=k |
v
Forj=1to NUM
for k=1 to NUM ~1204
| Sort MERR(j][k] by value and copy moves in {D[jJ[k] |
v
DMIN=0 1205
v
Forj=1to NUM
| DMIN = DMIN + MERR[JINUM / 20]
v
DMIN = DMIN / NUM
"I DIFAVE = 0 ~ 1200
v
Forj=1to NUM

STEPCNT{j}=0
Fork=1to NUM-NUM/20

1207

DIF = MERRjjik+1] - MERRI][K}

No 1208
1209 Yes 1210
\ 4 §
STEP[K|=0| [STEP[]K] = DIFF
STEPCNTI[j} = STEPCNT[j} + 1

\ 4 v
v
| DIFAVE = DIFAVE + STEPCNTIj] |~ 1211

IDIFAVE = DIFAVE / NUM

r~ 1212

1214

A

FIG. 12A

U.S. Patent Nov. 24, 2015 Sheet 19 of 21 US 9,194,892 B2

1215
No_—5 DIFAVE < .87

1216
1217 |NO CLUSTERS |
v M
HIST[]=0 EXIT

Forj=1to NUM
S1=0 1218
For k = 1 to NUM - NUM /20

DIF = MERR[jJk+1] - MERRJ]IK]

S R

Yes
IND = k — S1
HIST[IND] = HIST[IND] +1
St=k
v
v
SNUMI1=0 | ,.q
k=0 1220
v

Fori=1toNUM-3

Yes 1222
k=k+1
SNUMIK] = j
) 4 +
1223
1224
N ¥
|NO CLUSTERS | 1225

INC=k+1 |

) & FIG. 12B

U.S. Patent

v 9

Nov. 24, 2015

Sheet 20 of 21

US 9,194,892 B2

Forj=1tok

1226

No

s HIST[SNUM[]] > 1227

1.8 * NUM?

1228
§

[NC = NC + fix(HIST[SNUMIj]] / .9 * NUM) |

v

| Create NC — 1 new devices

1229

v

For each NC device

1230

Associate qualified instances with device
FIND BEST SEED INSTANCE
Adjust DEVMIN

v

For each unqualified instance

1231

1234
Y N

Does instance match
an existing device?

Yes 12%3

Create new
device

Assign instance to
matching device

Y

v

~-928

<« Y

m
x
3

FIG.

12C

U.S. Patent Nov. 24, 2015 Sheet 21 of 21 US 9,194,892 B2

FIG. 13

CONSOLIDATION ANALYSIS for device DEV

Fill array INSTN]] with instance numbers associated with device DEV 1301

NUM = number of instances associated with DEV
forj=1to NUM

1302
MERR] j] = CalulateMatchError(INSTN[j], DEV)
v
Sort values in MEER][]
TDEVMIN =0 1303
v
for each device j 1304
SEED?2 = seed instance of device | 1305
TERR = Calulatel\/latchError(SEEDZ, DEV)
NO Is TERR <2 * DEVMIN[DEV]? YES 1306
fill IKISTN2[] with instances associated with device j 1308
s NUMZ = number of instance associated with device j
for k = 1 to NUM2 1309
MERRZ2[k] = CalculateMatchError(INST2[k], DEV)
v
sort values in MERR2[] 1310
E1=0,E2=0
fork=11t05 1311

TE1 = MERR]NUM - k +1] - MERR[NUM -K]
TE2 = MERIEZ[k +1] - MERR2[K]

NO IsTE1>E1? YES » E1 =TI§1

[

>4

NO Is TE2 > E2? YES »E2 = TE1
v v

<« YES Is (MERR2[1]fMERR[NUM])> 1.2 * MAX(E1, E2)? NO 1312

associate all INST2[] instances with DEV 1313
delete cvievicej 1314 1315

«——NO Is MERR2[NUM2]> TDEVMIN? YES —TDEVMIN = MERR2[NUMZ]

\ 4

v 1316
N‘O Is TDEVMIN >0 YES? » DEVMIN[DEV] v 1.05 * TDEVMIN 1317

o FIND BEST SEED INSTANCE 1318
EXIT

US 9,194,892 B2

1
MATCHING POSITIVE TRANSITIONS IN A
TIME TRACE DISAGGREGATION PROCESS

TECHNICAL FIELD

This disclosure relates generally to time trace disaggrega-
tion processes, and more particularly to processes and opera-
tions for matching positive transitions in a time trace disag-
gregation process (TTDP).

BACKGROUND

Previous processes for identifying multiple individual
loads supplied by a common AC power service use measure-
ments of electrical parameters of only the common supply.
These parameters are digitally measured for each alternating
current (AC) supply cycle, e.g., 60 samples per second in
North America. The loads are identified using the time depen-
dent behaviors (referred to herein as time traces) of the first
few seconds of the turn-on positive transition of these param-
eters. Many conventional devices such as incandescent lights
and heaters consume essentially constant power after the
positive transition until the device is turned off, thus produc-
ing a negative transition. Provided none of the transitions
occur too close together, the on-off state of multiple devices
can be accurately determined, as well as the power, runtime,
and energy consumed by each device. This process is referred
to herein as a time trace disaggregation process (ITTDP).

Animportant consideration in a TTDP is matching the time
trace of a new positive transition with a similar previous time
trace associated with a particular device. If no match is found,
the new time trace is to be used as a template for a new device.

The process for matching must balance selectivity versus
tolerance. If the match is too selective, then multiple devices
will be created that represent the same physical device. If the
process for matching is too tolerant, however, multiple physi-
cal devices will be associated with the same device in the
TTDP.

Some devices produce very consistent time traces. For
example, incandescent lights and heaters produce very con-
sistent time traces. The time between cycles and the duration
of'a cycle have essentially no effect on the time trace for these
devices.

Some devices are sensitive to operating conditions and
produce time traces that vary significantly. For example, mul-
tiple slow-start florescent lights controlled by one switch
typically produce inconsistent time traces. This is because
each light flickers and turns on with a delay that depends on its
temperature. The time trace produced by cold lights is usually
significantly different from the time trace produced by warm
lights. The lights generally take several minutes to fully cool
after being turned off. So, if a light is turned on shortly after
it was turned off;, the time trace will be usually be significantly
different.

Some buildings may have different devices that have simi-
lar characteristics, such as incandescent lights that use 40
watts, 60 watts, and 75 watts, for example. The matching
process should be sufficiently selective to create separate
devices for each different light power. However, if there is
only a single device that produces a unique and highly vari-
able time trace, then the matching should be very tolerant so
that even imperfect time traces may be matched to the device.

Because of these considerations, the matching process
must have an adaptable selectivity that can be adjusted based
on the device type and the combination of devices served by
the common supply. Current technologies provide no such
processes.

10

15

20

25

30

35

40

45

50

55

60

65

2

Considering all of the process required to identify and track
a single on-off cycle of a device, the match process requires
the largest computing resource. Therefore, the computing
resource required to perform an analysis generally depends
on the efficiency of the matching process.

SUMMARY

Certain embodiments of the disclosed technology include
implementations configured to provide an improved time
trace matching process for a time trace disaggregation pro-
cess (TTDP).

Certain embodiments of the disclosed technology may
include implementations configured to provide a matching
process having adaptable selectivity.

Certain embodiments of the disclosed technology may
include implementations configured to provide a matching
process that is computationally efficient.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrates typical power positive transition time
traces produced by six typical devices.

FIG. 1B illustrates typical power positive transition time
traces produced by six devices other than the typical devices
of FIG. 1A.

FIG. 2A illustrates positive transition time traces for
power, reactive power, and current produced by a microwave
overn.

FIG. 2B illustrates positive transition time traces for power,
reactive power, and current produced by a capacitor start
motor.

FIG. 3 is a high level flow diagram of a FEATURE
MATCHING PROCESS configured to be used in connection
with or as part of a time trace disaggregation process (I TDP)
in accordance with certain embodiments of the disclosed
technology.

FIG. 4 illustrates examples of PEAK, STEP, and DECAY
features used to describe time traces.

FIG. 5 illustrates examples of MINIMUM, MAXIMUM,
and SLOPE features used to describe time traces.

FIG. 6 illustrates the power time trace of a typical refrig-
erator and its feature description.

FIG. 7 is a flow diagram of a FEATURE DESCRIPTION
PROCESS in accordance with certain embodiments of the
disclosed technology.

FIG. 8 is a flow diagram of a MATCH TO GENERIC
DEVICE PROCESS in accordance with certain embodi-
ments of the disclosed technology.

FIG. 9 is a flow diagram of a MATCH INSTANCE TO A
GENERIC DEVICE[K] process in accordance with certain
embodiments of the disclosed technology.

FIG. 10 is a flow diagram of a CalulateMatchFError() func-
tion process to determine the match error value between two
feature descriptions of time traces in accordance with certain
embodiments of the disclosed technology.

FIG. 11 is a flow diagram of a FIND BEST SEED
INSTANCE of DEVICE process in accordance with certain
embodiments of the disclosed technology.

FIG. 12 is a flow diagram of a CLUSTER ANALYSIS for
DEVICE process in accordance with certain embodiments of
the disclosed technology.

FIG. 13 is a flow diagram of a CONSOLIDATION
ANALYSIS process in accordance with certain embodiments
of'the disclosed technology.

DETAILED DESCRIPTION

FIG. 1A illustrates typical power positive transition time
traces produced by six typical devices. For these devices,

US 9,194,892 B2

3

stable power usage generally occurs from one second (e.g., 60
samples) to over three seconds (e.g., 190 samples) after the
start of positive transition.

FIG. 1B illustrates typical power positive transition time
traces produced by six devices other than the typical devices
of FIG. 1A. In the example, these devices all have stable
power consumption after about 0.5 seconds (e.g., 30
samples).

Devices of the same general category may have signifi-
cantly different time traces. For example, REFRIGERATOR
1 and REFRIGERATOR 2 in FIG. 1A have similar charac-
teristic features but are clearly produced by difterent devices.
ELECTRONIC 1 and ELECTRONIC 2 in FIG. 1B have less
similar features but share sufficient features to be identified in
the same broad category of “electronic” type device. Included
in this broad category are other devices such as large screen
televisions, high power audio amplifiers, and personal com-
puters with CRT monitors, for example.

FIG. 2A illustrates the time traces for power, reactive
power, and current for a household microwave oven. In the
example, each time trace has significant differences from the
other. Since these parameters are related, any pair of traces
can be used to derive the third. However, the effects of mea-
surement noise and power line noise can be reduced by pro-
cessing and matching all three time traces as though they were
independent variables. Typically, the time traces for power
and current and similar. However, the time trace for reactive
power can be quite different. For the microwave oven, the
behavior of the reactive power is somewhat like a mirror
image of the power.

FIG. 2B illustrates the time traces for power, reactive
power, and current for a one horsepower motor with a start
capacitor. Here, a secondary start coil in the motor is con-
nected in series with the start capacitor and the circuit is
powered for the first 12 AC cycles. The capacitor-coil com-
bination represents a large reactive power load for these
samples. The total power is also much larger during the start.
Power is removed from the start circuit at cycle 13, causing a
peak in the reactive power from the back EMF of'the start coil.
The power, reactive power, and current then rapidly decrease
as the motor reaches stable operating condition by sample 23,
about 0.4 seconds after the start of the transition.

The simplest time traces are generally produced by purely
resistive heater elements. The time trace is a step that reaches
stable operating conditions within a couple of AC cycles.
There is essentially zero reactive power. Lightly loaded
induction motors produce a similar power trace, but are also a
substantial reactive power load. By considering the time
traces of both power and reactive power, the devices can be
differentiated even though the power time traces are essen-
tially identical.

FIG. 3 is a high level flow diagram of a FEATURE
MATCHING PROCESS configured to be used in connection
with or as part of a time trace disaggregation process (I TDP)
in accordance with certain embodiments of the disclosed
technology. Positive transitions may be detected and pro-
cessed independently for each service leg (e.g., two legs for
residential split single-phase service and three legs for com-
mercial three-phase service).

After a positive transition is detected, a new instance num-
bered j may be created and its positive transition data block
may be captured, as indicated at 301. The transition data
block generally contains samples for power, reactive power
and current. The average values of power, reactive power, and
current may be determined for samples immediately before
the positive transition. These average values may be sub-
tracted from each corresponding sample of the transition data

10

15

20

25

30

35

40

45

50

55

60

65

4

block. The value of the first samples of power, reactive power,
and current in the transition data block are usually zero. The
second sample is typically the first affected by the positive
transition.

In the example, the maximum number of samples in the
transition data block is 300 (e.g., 5 seconds). There may be
fewer samples if all parameter values become stable after at
least 60 samples. If another significant positive transition
occurs within the data block, the data block may be ended and
another started. The process generally attempts to maximize
the probability that both transition blocks can be properly
identified and tracked.

After the transition data block is captured, a detailed fea-
ture description of the time trace for power, reactive power,
and current may be created, as indicated at 302. Each feature
of the time trace may be specified by the following triplet of
values:

1. Feature type (e.g., one of the predefined features illus-

trated by FIGS. 4 and 5, described below)

2. Sample number when the feature occurred

3. Parameter value when the feature occurred

The number of features in the description typically
depends on the complexity of the time trace. The simplest
time trace (e.g., heater) generally requires three features. In
certain embodiments, only the first 12 features need be con-
sidered when matching time traces. FIG. 7, described below,
is a flow diagram of an example of such a FEATURE
DESCRIPTION PROCESS.

After the time trace feature descriptions are created, the
feature descriptions may be matched to a generic device, as
indicated at 303. The features and other general characteris-
tics of the time traces may be considered to find the best match
to one of the predefined general categories. Some examples of
suitable generic devices are as follows:

1. Heater
. Induction Motor
. Hard Start Motor
. Universal Motor
. Washing Machine Motor
. Electric Dryer Motor
. HVAC Fan Motor
. Heater+Motor

9. Incandescent Light

10. Fast Start Florescent Light

11. Slow Start Florescent Light

12. Refrigerator

13. Air Conditioner

14. Microwave

15. Large Electronic

16. Small Electronic

FIG. 8, described below, is a flow diagram of an example of
such a MATCH TO GENERIC DEVICE PROCESS.

The matching process may be composed of a quick match
based on six parameters followed by a detailed test based on
the time trace features, for example. The quick match param-
eters may be determined after the feature description and
generic assignment are completed. The quick match param-
eters may include any or all of the following parameters or
any suitable variation thereof:

. Average power during first 50 samples

. Average reactive power during first 50 samples

. Average current during first 50 samples

. Generic device type

. Service leg

. Instance code (e.g., one of conventional, periodic, slow,
or multi-phase). The general TTDP structures may sup-
port several types of instances and devices. The instance

O~ OV bW

AN R W N =

US 9,194,892 B2

5

code of all instances and devices may be assumed to be
conventional or multi-phase.
The six quick match parameters listed above may be associ-
ated with each instance and device.

A CalculateMatchError(j, k) function 304 may return an
error value that is a measure of similarity between instance j
and devicek. Devices may be defined by the time trace feature
descriptions and quick match parameters of their “seed”
instance. Therefore, this routine is essentially comparing the
quick match parameters and feature descriptions of two
instances. FIG. 10, described below, is a flow diagram of an
example of the CalculateMatchError(j, k) function 304.

In the example, the variable ERRMIN may be set to a large
value and the instance j may be compared with each existing
device. TERR represents the return error from the Calcu-
lateMatchError(j, k) function 304. Ifthe value of TERR is less
than a threshold match error value DEVNIM]Jj]| for device k as
compared at 305, then the device is a potential match.

In the example, DEVMINJK] was set to a value associated
with its generic device when the device k was created. This
threshold value generally accounts for the expected variations
in the time traces produced by the generic device type. The
value of DEVMIN[k]| may change after additional data is
processed to adapt to the measured behavior of the device.

The best match may be determined by first normalizing
TERR by dividing by DEVMIN[K] and then comparing the
result to ERRMIN, as indicated at 306. If the normalized
match error is less than ERRMIN, then ERRMIN may be set
to TERR/DEVMIN[K] and DEV may be set to k, the device
number that produced the smaller normalized error, as indi-
cated at 307.

ERRMIN may be compared to DEFAULTMIN, as indi-
cated at 308. fERRMIN is equal to DEFAULTMIN, then no
match was found and the instance j may be used as the seed
instance to create a new device, as indicated at 309. The new
device may inherit the quick match values and the feature
description of the time traces of the instance.

If ERRMIN is less than DEFAULTMIN, then the instance
may be associated with device DEV, as indicated at 310. In the
example, the value of array element ICNT[DEV] is
the number of instances matched to device DEV. When ICNT
[DEV]=10, 20, 30, 40, or 50, as may be determined at 318, a
search may be made for the best seed instance among the
instances associated with device DEV, as indicated at 319.
Then, the CalculateMatchError(j, k) function may be called
for each pair of instances. The match error values between
instance j and every other instance may be summed to calcu-
late a total match error for instance j. The instance with the
smallest total match error may become the new seed instance.
This may ensure that the seed instance behavior is typical and
representative of the behavior of the device. FIG. 11,
described below, is a flow diagram of an example of such a
FIND BEST SEED INSTANCE of DEVICE process.

When ICNT[DEV]=100 and 500, as may be determined at
311, a CLUSTER ANALYSIS process, as indicated at 312,
may be used to determine whether the match threshold is too
large such that two or more different devices may be grouped
into a single device. The large number of devices considered
may ensure sufficient examples for reliable analysis. FIG. 12,
described below, is a flow diagram of an example of a CLUS-
TER ANALYSIS for DEVICE process as may be performed
at 313. If two or more separable clusters are found, new
devices may be created so that there is a separate device for
each cluster and the value of DEVMIN] | for each device may
be selected to provide sufficient selectivity so new instances
may be properly matched, as indicated at 314.

10

15

20

25

30

40

45

50

55

60

65

6

When ICNT[DEV]=100 and 500, a CONSOLIDATION
ANALYSIS process, as indicated at 315, may be used to
determine whether there are devices that should be consoli-
dated. The process may be used to determine whether the
instances associated with two or more different devices are
produced by the same physical device. As noted above, FIG.
12, discussed below, provides an example of such a process.

Ifthere are devices to consolidate, as may be determined at
316, then all of the instances may be associated with one
device, a new seed instance may be found, and the match
threshold DEVMIN] | may be adjusted to ensure that new
instances are correctly matched, as indicated at 317.

Any or all of the following 14 features may be used to
describe time traces:

1. Check-point—the sample value may be reported every

50 samples, for example, independent of other features.

2. Positive large peak—a rapid large increase in value
followed by a rapid large decrease; the peak is usually at
least 2.5 times larger than reference values.

3. Negative large peak—a rapid large decrease in value
followed by a rapid large increase; the peak is usually at
least 2.5 times larger than reference values.

4. Positive small peak—a rapid large increase in value
followed by a rapid large decrease; the peak is usually
less than 2.5 times larger than reference values.

5. Negative small peak—a rapid large decrease in value
followed by a rapid large increase; the peak is usually
less than 2.5 times larger than reference values.

6. Positive step—generally, a rapid increase followed by
relatively stable samples.

7. Negative step—generally, a rapid decrease followed by
relatively stable samples.

8. Maximum value—the maximum value in a local region;
hysteresis may be used so that only significant extremes
are detected. A minimum value generally must occur
before another maximum can occur.

9. Minimum value—the minimum value in a local region;
hysteresis may be used so that only significant extremes
are detected. A maximum value generally must occur
before another minimum can occur.

10. Maximum positive slope—local maximum positive
slope determined by linear equation fit using four adja-
cent samples; hysteresis may be used so that only sig-
nificant extremes are detected.

11. Minimum slope—local minimum of the absolute slope
determined by linear equation fit using four adjacent
samples; hysteresis may be used so that only significant
extremes are detected.

12. Maximum negative slope—local maximum of negative
slope determined by linear equation fit using four adja-
cent samples, for example; hysteresis may be used so
that only significant extremes are detected.

13. Decay—a feature similar to an exponential decay; gen-
erally occurs only once in a trace and at least two
samples after a positive peak.

14. End of trace—the end of the trace description.

FIG. 4 illustrates examples of PEAK, STEP, and DECAY
features used to describe time traces. More particularly, FIG.
4 illustrates sequences of four samples that are recognized as
large peaks, small peaks, and steps. While peaks and steps are
typically determined by the relative values of four sequential
samples, additional samples may occasionally be considered.

Samples 401, 402, 403, and 404 are an example of a large
positive peak feature. Samples 401, 402, and 403 are rapidly
increasing and sample 404 is rapidly decreasing. The magni-
tude of the difference between 403 and 401 or between 403
and 404 (the larger of the two magnitudes) is more than 2.5

US 9,194,892 B2

7

times the magnitude of the difference between sample 401
and 404. There are other relative values that are considered
large positive peaks. For example, the first two samples may
represent the rapid increase and the last two samples may
represent the rapid decrease. The process to detect peaks may
consider all permutations of possibilities.

Samples 411, 412, 413, and 414 are an example of a small
positive peak feature. Samples 411, 412, and 413 are rapidly
increasing and sample 414 is rapidly decreasing. The magni-
tude of the difference between 413 and 411 or between 413
and 414 (the larger of the two magnitudes) is less than 2.5
times the magnitude of the difference between sample 411
and 414.

Samples 421, 422, 423, and 424 are an example of a posi-
tive step feature. Samples 421, 422, and 423 are rapidly
increasing and the value of sample 424 is about the same as
423.

Samples 431, 432, 433, and 434 are an example of a large
negative peak feature. Samples 431, 432, and 433 are rapidly
decreasing and sample 434 is rapidly increasing. Sample 433
is the peak minimum value. The magnitude of the difference
between 433 and 431 or between 433 and 434 (the larger of
the two magnitudes) is more than 2.5 times the magnitude of
the difference between sample 431 and 434.

Samples 441, 442, 443, and 444 are an example of a small
negative peak feature. Samples 441, 442, and 443 are rapidly
decreasing and sample 444 is rapidly increasing. Sample 443
is the peak minimum value. The magnitude of the difference
between 443 and 441 or between 443 and 444 (the larger of
the two magnitudes) is less than 2.5 times the magnitude of
the difference between sample 441 and 444.

Samples 451, 452, 453, and 454 are an example of a nega-
tive step feature. Samples 451, 452, and 453 are rapidly
decreasing and the value of sample 454 is about the same as
453.

There are some permutations of values that are ambiguous
but may be determined by examining the next sequential
sample. When there is a potential peak or step, a flag may be
set that affects the evaluation of the next set of for samples that
includes one new sample.

Samples 462 through 470 represent an approximate expo-
nential decay from a large value 462. The decay feature
generally can occur only once in a transition and must usually
follow a positive peak or step feature. The detection process
may require that sample values continuously decrease until
approximately stable (e.g., samples 469 and 470 in the
example). The stable value must generally be less than 0.5
times the peak value, i.e., 462. The feature is generally
reported to occur when the sample value becomes less than
the average of the peak value and the stable value. In the
example, sample 466 represents the decay feature and pro-
vides the value and time for the feature triplet.

FIG. 5 illustrates examples of MINIMUM, MAXIMUM,
and SLOPE features used to describe time traces. Samples
501 through 524 represent a time trace with minimum and
maximum features. HYSTERESIS, as represented by a
double ended arrow in the figure, may be used to prevent
identifying small changes as minimum or maximum features.
HYSTERESIS is typically set to 10% of the average param-
eter value during the first 50 samples.

Sample 503 represents a maximum feature. Itis recognized
when the difference between sample 503 and a latter sample
is less than HYSTERESIS. Here, this occurs with sample
504. Sample 507 represents a minimum feature and is not
recognized as a feature until sample 509 since the difference
between sample 508 and 507 is less than HYSTERESIS.
Samples 510 and 520 represent maximum features. Sample

10

15

20

25

30

35

40

45

50

55

60

65

8

516 represents a minimum feature. It is not recognized as a
feature until sample 519 when the difference becomes greater
than HYSTERESIS. Sample 518 does not represent a mini-
mum feature.

Samples 550 through 571 represent a time trace with slope
features. In the example, the slope feature process fits four
consecutive samples to a linear equation using the least mean
squares error process. There is a slope associated with each
sample. As samples are processed, the slope is checked for the
maximum negative value, minimum absolute value, and
maximum positive value. Hysteresis may be used to prevent
identifying small changes as slope features.

The slope of the equation fit to samples 552 through 555
represents a maximum (i.e., largest absolute value) negative
slope. Here, a maximum negative slope feature is associated
with sample 554. The slope then decreases for each succes-
sive sample group of four. The slope is a minimum for
samples 555 through 558. The slope then becomes more
negative. The maximum negative slope occurs for samples
557 through 560. Sample 559 represents a maximum negative
slope feature. The slope then becomes less negative, until it
goes from negative to positive. The smallest absolute slope
occurs for samples 560 through 563. Sample 562 represents a
minimum slope feature. The slope increases to maximum for
samples 565 through 568. Sample 567 represents a maximum
positive slope feature.

FIG. 6 is an example of a power time trace for a typical
refrigerator and the features that describe the time trace.
Samples 601 through 661 represent the value of the power
during the positive transition. The first feature is a positive
step associated with sample 602 (the second sample of the
time trace). The value of sample 602 is 1749 Watts. A maxi-
mum negative slope is associated with sample 616 (the 167
samples) with a value of 1433. These features are followed by
a minimum slope (624), a second maximum negative slope
(635), a check point (650), and the last feature is an end of
trace (661).

In the example, the feature description is composed of the
following six triplets:

Feature Code Sample Value
Positive Step 6 2 1749
Maximum negative slope 12 16 1433
Minimum Slope 11 24 1193
Maximum negative slope 12 35 581
Check point 1 50 206
End of trace 14 61 193

FIG. 7 is a flow diagram of a FEATURE DESCRIPTION
PROCESS that may be used to determine the feature descrip-
tion. The power, reactive power, and current parameters may
be processed separately. In the example, there are five sepa-
rate and independent processes that are used detect features:

1. Check-point process 702-703

2. Peak and step detection process 704-705

3. Decay detection process 706-707

4. Minimum and maximum detection process 708-709

5. Slope detection process 710-711

Sub-process 701 may be used to sequentially process each
of the time trace samples j. Each feature detection process
may consider the appropriate number of samples and gener-
ate a triplet that specifies the detected feature. The feature
triplets may be stored sequentially in BUFFER when the
feature values are completely determined, e.g., as indicated at
703, 705, 707,709, and 711.

US 9,194,892 B2

9

The check-point process may report the parameter value
for the sample numbers 50, 100, 150, 200, 250, and 300.

The peak and step detection process generally requires at
least four consecutive samples. A step or peak feature usually
cannot be detected until j=4. Therefore, the triplet for a peak
or step feature that occurs at sample 2 is generally not stored
in BUFFER until at least sample 4. The other three feature
detection processes typically cannot identify the feature until
many samples after the sample number that represents the
feature. Therefore the triplets stored in BUFFER typically
occur not in the order of their sample number.

After process 701 completes, an end of trace triplet may be
stored in BUFFER, as indicated at 712. The feature triplets in
BUFFER may be subsequently sorted in order of sample
number, as indicated at 713.

The same set of samples may be recognized by multiple
feature detection process. For example, the minimum and
maximum features may also be reported as minimum slope
features. As another example, a positive peak feature is also a
maximum feature. The feature types are typically assigned a
priority from strongest to weakest. The priority from stron-
gest to weakest is generally as follows:

1. Large peak

2. Small peak

3. Step

4. Decay

5. Minimum or maximum

6. Slope

When there are redundant features, as may be determined
at 714, the weaker features may be removed, as indicated at
715. Check-point and end of trace features are typically not
included when testing for redundancy. They are usually never
removed nor cause another feature to be removed.

In the example, the remaining sequence of feature triplets
may be stored in a two-dimensional array FEATURES[][|, as
indicated at 716. The primary index to FEATURES]][] is
generally the instance number INSTNUM. The secondary
index typically accesses elements to store the feature descrip-
tion for power, reactive power and current.

The available quick match parameters described above
may be stored in FEATURES]][], as indicated at 717.

FIG. 8 is a flow diagram of a MATCH INSTANCE TO
GENERIC DEVICE PROCESS that may be used to deter-
mine the generic device type using the feature description
stored in FEATURES[INST]][|, for example. The first pro-
cess step generally involves calculating the values of a set of
generic parameters, as indicated at 801. In the example, these
parameters include:

1. MAXPOW—the maximum power value among the fea-

tures in the power feature description.

2. MAXTIME—the sample number of the maximum
power feature.

3. MINPOW—the minimum power value among the fea-
tures in the power feature description.

4. MINTIME—the sample number of the minimum power
feature.

5. CHECKPTJ |—an array containing the power check
point values. The value at index zero is the value of the
end of trace feature.

6. POWERFACTOR1—The power factor calculated using
the power and reactive power check point values for
sample 50, for example.

7. POWERFACTOR2—The power factor calculated using
the power and reactive power check point values for
sample 100, for example.
POWERFACTOR2=POWERFACTORI1 if the time
trace ends before sample 100, for example.

10

15

20

25

30

35

40

45

50

55

60

65

10

8. POWERFACTOR3—The power factor calculated using
the average of the power and reactive power check point
values for samples 150, 200, 250, and 300, for example.
Only valid check-point values are typically averaged.
POWERFACTOR3=POWERFACTOR?2 if the time
trace ends before sample 150, for example.

9. STARTOFSTABLE—the number of samples after start
when the power samples reach relatively stable values.

10. PEAKCOUNT—the number of peak type features in
the power trace feature description.

11. STEPCOUNT—the number of step type features in the
power trace feature description.

12. MINMAXCOUNT—the number of minimum and
maximum features in the power trace feature descrip-
tion.

Features that occur within the first five samples of the start
of' the time trace are typically not considered when determin-
ing MINPOWER. This may prevent spurious start-up spikes
from affecting the value.

The term POWERFACTOR as used herein generally refers
to the ratio of reactive power to (real) power. Therefore, a
purely resistive load has POWERFACTOR=0. The values of
POWERFACTOR may be positive or negative and have an
absolute value greater than 1.

A TTDP may be adapted for use with three-phase supplies.
A multi-phase device may be connected to the supply legs
such that no current flows through neutral. For a three-phase
supply, the voltage of each leg is generally 120 degrees out of
phase relative to the other two legs. For a pure resistive load,
the current in each leg is generally 60 degrees out of phase
relative to the voltage of the leg. This typically causes a large
apparent reactive power for a resistive device. For residential
split single-phase supply, the voltages of the two legs are
generally 180 degrees out of phase, so the current in each leg
is in phase to the voltage of the leg. The calculations of the
POWERFACTOR parameters may be adapted to produce
identical power factors for the same device, independent of
the supply type.

Each specific generic device definition generally includes a
set of predetermined constants and function that returns a true
value if the data in FEATURES]][| satisfy the requirements
of the specific generic device. Each specific device function
can typically access the set of generic parameters at 801.

Sub-process 802 sequentially calls each specific generic
device k the function MatchlnstanceToGenericDevice(INST,
k). If the return value is TRUE, as may be determined at 803,
then the code for the specific generic device may be returned
by the MATCH INSTANCE TO GENERIC DEVICE PRO-
CESS, as indicated at 804.

If the data in FEATURES[INST][] does not match any
specific generic device, then one of three default generic
devices may be returned, depending on the value of MIN-
POW. IfMINPOW is greater than the predetermined constant
LARGEPOW, as may be determined at 805, then the returned
generic type is LARGE DEFAULT TYPE, as indicated at
806. LARGEPOW is typically set to 150 Watts. If MINPOW
is less than the predetermined constant SMALLPOW, as may
be determined at 807, then the returned generic type is
SMALL DEFAULT TYPE, as indicated at 808. SMALL-
POW is typically set to 50 Watts. If MINPOW is between
SMALLPOW and LARGEPOW, then the returned generic
type is MEDIUM DEFAULT DEVICE, as indicated at 809.

FIG. 9 is a flow diagram of a MATCH INSTANCE TO A
GENERIC DEVICE[K] process in accordance with certain
embodiments of the disclosed technology. More particularly,
FIG. 9 is a general flow diagram of a typical specific generic
device function MatchlnstanceToGenericDevice(INST, k).

US 9,194,892 B2

11

Inthe example, the first set of tests compare values of selected
generic parameters 801 with predetermined constants asso-
ciated with each generic device k. For the example of FIG. 9,
the parameters MAXPOW, MINPOW, POWERFACTOR]1,
PEAKCNT and STEPCNT are tested to determine whether
they are each within the range of maximum limit (. . .
MAXLIM[k]) and minimum limit (. . . MINLIM[k]), as
indicated at 901-902, 903-904, 905-906, 907-908, and 909-
910, respectively. If any of the selected parameters are out
side the specified range for that parameter, then the function
returns FALSE.

If all selected generic parameters are in range, then the
characterizing sequence of features may be tested, as indi-
cated at 911. For most generic devices, only the features of the
power time trace need be considered. For some generic
devices, the features of the reactive power time trace may also
be considered. For the example illustrated in FIG. 9, the
characterizing sequence begins with the feature GENFEA-
TURE[k][0]. Each feature type in FEATURES[INST][| may
be sequentially compared with the first feature of the charac-
terizing sequence, as indicated at 912. If the first characteriz-
ing feature is not found, then FALSE may be returned. If the
first characterizing feature is found, however, then the next
sequential features may each be compared to the correspond-
ing characterizing feature, as indicated at 913. If all of the
characterizing features match, then TRUE is returned. If any
feature does not match, then FALSE is returned.

The selected parameters, their respective limits, and the
sequence of characterizing features may be determined by
inspection of time traces of various known devices such as
those illustrated in FIGS. 1A and 1B. Further, it will be
appreciated that the flow diagram of FIG. 9 can easily be
adapted by one having ordinary skill in the art to match the
observed range of behaviors of different devices of the same
generic device type.

For example, the sequence of characterizing features of the
power time trace of all refrigerators is {positive step or posi-
tive small peak}, maximum negative slope, minimum slope,
and maximum negative slope. There should be no other fea-
tures between the three slope features. While there could be
other minimum, maximum, or slope features following these,
the variations in the values should be small. For the refrigera-
tor generic type, the process may be adapted to search for
either a positive step or a positive small peak and a test for the
fourth characterizing feature may be added.

The following may be applied for residential refrigerators:

800 Watts<sMAXPOW<2500 Watts

50 Watts<MINPOW<500 Watts

0.1<POWERFACTOR1<0.7

0<=PEAKCNT<=1

0<=STEPCNT<=1

FIG. 10 is a flow diagram of a CalulateMatchError(j, k)
function process to determine the match error value between
two feature descriptions of time traces in accordance with
certain embodiments of the disclosed technology. In the
example, the parameter j is the instance number and k is the
device number. Since the feature descriptions for instances
and devices are identical, the function is easily adaptable to
returning the match error between two instances. For the
function CalulateMatchError2(j, k), discussed below, both j
and k are instance numbers.

Here, the quick match parameters are first tested, as indi-
cated at 1001. If any quick match parameter fails to match,
then CalulateMatchError(j, k) may return the value
DEFAULTMIN (e.g., a value larger than any possible match

10

—

5

20

25

30

40

45

50

55

60

12

error such as 1,000,000), as indicated at 1002. The testing
order and match criteria for each quick match parameter may
be as follows:

1. Generic device type: must be equal
Service leg: must be equal
Instance code: must be equal
Average power during first 50 samples: must be within
50%

5. Average current during first 50 samples: must be within

50%
6. Average reactive power during first 50 samples: both
must be less than 5% of average power or be within 50%
Testing the quick match parameters in this order generally
uses the least processing power to return a DEFAULTMIN
value for larger numbers of tests.

If the tests of the quick match parameters pass, then the
match error may be calculated. The match error is generally a
weighted and normalized least squares sum of the match
errors between pairs of features that match. A weighted match
error value may also be determined for all features that do not
match with any feature in the other time trace.

If the values or samples being compared are V1 and V2,
then the normalized error NERR is as follows:

2.
3.
4.

NERR=(W*abs(V1-12))/(abs(¥1)+abs(¥2)).

Here, W is the weight of this comparison relative to others. All
NERR**2 and all W for all comparisons are summed to get
REER=SUM(NERR*#*2) and RWERR=SUM(W). The final
match error value returned is square root (REER)/RWERR.

The variable WEIGHT] | is a one dimension array with
three elements. It determines the relative importance of the
match error of the time traces for power, reactive power,
and current. Since power is always important, WEIGHT
[power]=1.

If there is very little reactive power relative to power, then
the reactive time trace may be determined mostly be measure-
ment noise, so the match error of the reactive time trace
generally has little value. Therefore, WEIGHT[reactive
power|=average(abs(reactive power))/average(power).
WEIGHT][reactive power] is generally limited to a maximum
value of 1. The averages may be determined using the sum of
check-point feature values from the instance and device.

WEIGHT[current]=1-0.5*WEIGHT[reactive = power].
This adjustment for large reactive power balances the match
error so that each parameter time trace may be appropriately
considered in determining the total match error. Other meth-
ods of determining the relative weighting may be used. The
important behavior is to reduce WEIGHT[reactive power]
when the instance and device have small reactive loads.

The variables REER and RWERR may be initialized to
Zero.

The error contribution for the features of the power, reac-
tive power, and current time traces may be calculated and
accumulated. The parameter TERR may be initialized using
the match error between the 50 sample average values (e.g.,
quick match parameters) and WERR may be set to the weight
BIN, which is typically three times the weighting of a feature
match. These variables may then be used to accumulate the
weighted match error (TERR) and the weighting (WERR)
applied to each match error.

Sub-process 1003 may sequentially select all feature
triples jj for instance j. For example, suppose FIG. 10 illus-
trates instance j, and the 6 feature triplets that represents its
power time trace. The variable jj sequentially selects each
feature in order, the order determined by increasing sample
number. The variable FERR may be used to find the minimum
match error (e.g., the best match) between the feature jj and a

US 9,194,892 B2

13
feature kk from the feature description of device k. FERR
may be initialized to a large value DEFAULTMIN.

Sub-process 1004 may sequentially select each feature kk
of'devicek. Since the instance and device feature descriptions
have the same structure, FIG. 10 can also represent the device
k and its feature triplets. The variable kk sequentially selects
each feature in order, the order determined by increasing
sample number. The variable TERR may be set to the return
value of the function FeatureMatch(jj, kk) which is described
in the following. This function generally uses the feature
types, feature samples, and feature values to determine the
match error. The default error value DEFAULTMIN may be
returned if the features are too dissimilar.

In the example, the FeatureMatch(jj, kk) function first
compares the feature types for an exact match or similar
match. The comparison is made using predetermined
values in the two dimensional (14 by 14) element array
FMATCH]][]. The feature code of jj and kk may be used to
access FMATCH]][]. As discussed above, the feature codes
may range from 1 to 14. A value of zero in FMATCH]][|
generally corresponds to no match, and DEFAULTMIN is
returned.

Non-zero values in FMATCH] |[| may be used as error
multipliers. If the features are the same, the value is 1. If the
features are related, the values are greater than 1. The match
error is larger (without affecting the weighting) when the
value is greater than 1.

If the features are closely related, the value is 2. For
example, a small positive peak and a large positive peak are
typically differentiated by a threshold. Therefore, a small
difference in sample values can cause a change in feature
type.

If the features are similar, then the value is 3. For example,
a step and a large peak both represent a rapid change in values.
Ifthe peak is a few samples wide, then variations in sampling
or device behavior can change a peak into a step.

The FeatureMatch(jj, kk) function next compares the abso-
lute difference SDIF between feature sample numbers. If
SDIF exceeds a predetermined maximum MAXSAMPDIF,
then there is no match and DEFAULTMIN is returned. If the
feature sample of the jj feature is SAMPNUM, then MAX-
SAMPDIF=5+(SAMPNUM/3). Therefore, the maximum
allowed difference increases as the sample increases. If SDIF
is less than or equal to MAXSAMPDIF, then the normalized
error values are calculated for the differences in sample num-
bers and differences in sample values.

The sample number resolution is small compared to the
resolution of values. Mismatch errors of up to 2 samples may
be caused by sampling. The relatively small values of sample
numbers may make this a large error. Therefore, the value 2 is
subtracted from SDIF before its weighted match error contri-
bution is calculated.

The normalized match errors for sample difference and
value difference are added and the total scaled by 1, 2 or 3,
depending on the closeness of feature type match. This value
is then returned by FeatureMatch(jj, kk)

If there is a match, FERR is the smallest match error and
MINKK is the index to the matching feature in device kk. If
FERR is less than DEFAULTMIN, as may be determined at
1005, then the weight for the error may be determined, as
indicated at 1006. Sub-process 1006 also marks the instance
feature jj and device feature MINKK as used. These two
features contributed to the total match error, and are therefore
excluded from additional error processing.

The weight generally depends on the strength of the fea-
ture. Peaks, steps, and decay features have weights=1. Check-
point and end of report features have weights=0.7, minimum
and maximum value features have weights=0.3. Slope fea-

30

35

40

45

55

14

tures have weights=0.3. (The weight value of the weakest
feature may be used if the features have different weights.)
The variable TWERR may set by function MatchErrorWeight
(i), MINKK) which returns the corresponding weight value.
The minimum match error FERR is weighted by TWEER and
added to TERR, and TWEER is added to WERR.

Determinations are made at 1007 and 1008 as to whether
the features jj and MINKK are marked as used and thus not
considered in other portions of the method illustrated in FIG.
10. Sub-process 1006 marked as used all features that con-
tributed to the total match error.

All ofthe features that match may be processed and marked
as used. A weighted match error may be calculated for each
unmatched feature in instance j. The function MisError-
Weight(jj) may be used to return the weight TWEER based on
the feature type.

The function MisFeatureMatch(jj) may be used to deter-
mine the difference in values at the sample number of the
feature jj. The nearest feature in device k before feature jj
(e.g., smaller sample number) and the nearest feature in
device k after feature jj (e.g., larger sample number) may be
used to determine a value for device k at the sample number
of feature jj. The function returns the normalized match error
FERR between these two values. The weighted match error
FERR*TWEER is added to TERR and the weight TWEER is
added to WERR.

The unmatched features in device k may be processed in
the same manner as that of the unmatched feature in instance

i
The total weighted match error TERR for the time trace

may be weighted again by the value of WEIGHT]] and added
to REER and WEIGHT][| may be added to RWEER, as
indicated at 1009.

The return match error value is square root(RERR)/
RWEER, as indicated at 1010.

FIG. 11 is a flow diagram of a FIND BEST SEED
INSTANCE of DEVICE process in accordance with certain
embodiments of the disclosed technology.

Sub-process 1101 may be used to search the set of captured
instances to find the instance number of each instances asso-
ciated with device DEV. If the DEVNUM of instance k is
equal to DEV, as may be determined at 1102, then the index
NUM may be incremented, as indicated at 1103. The
instance number k may be stored in element NUM of the array
INSTNJ |. When process 1101 completes, the instance num-
ber of all the instances associated with device DEV may be
stored in INSTN]J]. The number of instances=NUM.

The CalculateMatchError2(INSTN[j], INSTN[k]) func-
tion may be used to determine the match error between
instance INSTN][] and INSTNJKk]. The function CalculateM-
atchError2() generally compares the time traces of two
instances and is adapted from the function CalculateMatch-
Error(), which compares an instance and a device. The two
dimensional array MERR]][] may contain the match error
value between every combination of pairs of instances asso-
ciated with device DEV, as indicated at 1104.

The RMS total error of instance INSTN[j] may be calcu-
lated and matched to every other instance. The variable TERR
may be used to accumulate the squares of the match errors
stored in MERR]][], as indicated at 1106.

After sub-process 1105 completes for instance INSTNJj],
the RMS error TERR may be calculated and compared to
MINERR, as indicated at 1107 and 1108, respectively. If the
error TERR is less than MINERR, then MINERR=TERR and
NEWSEED may be set to INSTNJj], as indicated at 1109.

NEWSEED generally refers to the instance number of the
instance that has the smallest total RMS match error to all of

US 9,194,892 B2

15

the other instances associated with device DEV. Therefore,
this is usually the new best seed instance for the device. The
specification instance for device DEV may then be changed to
be NEWSEED and all affected variables may be updated, as
indicated at 1110.

FIG. 12 is a flow diagram of a CLUSTER ANALYSIS for
DEVICE process in accordance with certain embodiments of
the disclosed technology. The process may be run only when
there are 100 or 500 instances associated with a device, for
example. This may ensure that there are sufficient instances to
establish reliable statistical behavior.

In the example, the process first fills the array INSTNJ |
with the instance numbers associated with device DEV, as
indicated at 1201. The two-dimensional array MERR] [|
may then be filled with the match error of every pair combi-
nation of the instances associated with device DEV, as indi-
cated at 1202.

A two dimensional array ID[][| may be initialized with
index values to INSTNTJ | that were used to generate the match
error values stored in MERR]][|, as indicated at 1203. This
array may be used to track the identity the instance as values
are moved in MERR]][].

NUM match error values may be sorted in row j of MERR
[71[]- The values are generally sorted so that the smallest value
is atindex k=1, as indicated at 1204. There will be at least one
match error value of zero since each row contains a self match
of instance j to instance j. As values are moved in j row of
MERRU[j][], the same moves are replicated in array ID[j][], as
indicated at 1204. After the row is sorted, the values in the row
j of ID[j][| are the indexes into INSTN]] that contains the
instance number corresponding to the sorted match error.

MERR]][] generally contains the sorted match error val-
ues for all of the instances and ID[][] links the match errors
to the pair of instance that produced the match error. Ideally,
the distribution of match errors should be Gaussian if the
instance were produced by a single device. Therefore, the
sorted error values should slowly and uniformly increase.
Likewise, the difference between successive values should
also uniformly increase.

If the instances were produced by two of more distinctive
devices, then there should be a separate Gaussian distribution
of' match errors for each device. The match error between any
pair of instances produced by different devices should be
greater than any match error between instances produced by
the same device.

If there are instances produced by different devices, the
sorted error values will have a step increase between adjacent
values followed by a reduction in rate of change. Each differ-
ent device will cause a separate step change followed by a
reduced rate of change.

Each sorted row should have the same number of steps, but
these will typically occur at different locations in the sort. For
example, suppose there are instances produced by three dis-
tinct devices A, B, and C. Suppose device A produced 100
instances, device B produced 150 instances, and device C
produced 250 instances. The sorted match errors for instances
produced by Device A will have its first step between k=100
and k=101. There will be 100 rows with a step between these
indexes. The sorted match errors for instances produced by
Device B will have its first step between k=150 and k=151.
There will be 150 rows with a step between these indexes. The
sorted match errors for instances produced by Device C will
have its first step between k=250 and k=251. There will be
250 rows with a step between these indexes.

For device A instances, the second step could occur
between samples 250 and 251 or between samples 350 and
351. For device B instances, the second step could occur

20

35

40

45

50

16

between samples 250 and 251 or between samples 350 and
351. For device C instances, the second step could occur
between samples 350 and 351 or between samples 400 and
401. This example assumes ideal conditions and measure-
ments. Typically, a small percentage of instances will produce
anomalous results. Therefore the process is adapted for rea-
sonable variations form ideal behavior.

An initial value of threshold DMIN may be determined at
1205 to detect step changes in the sorted match errors. The
average value of the 5% (for 100 instances) or 25% (for 500
instances) smallest match errors may be found in each sorted
row (e.g., Num/20=5 or 25 for 100 or 500 instances). The
match error values from NUM sorted rows may be accumu-
lated in DMIN and then DMIN may be divided by NUM to get
the average, as indicated at 1206.

The variable DIFAVE may be used to calculate the average
number of steps in each row and may be initialized to zero, as
indicated at 1206.

The process may search for step changes in the row values
and record detected changes in the two dimensional array
STEPJ[][], as indicated at 1207. The variable DIFAVE may be
used to adjust the value of DIF if necessary. Each j row of
sorted values may be processed.

The array STEPCNT] | may be used to count the detected
step changes in the match errors in each row j and may be
initialized to zero.

In certain embodiments, the process only considers the
smallest 95% of the match error values. This prevents likely
anomalous instances with the largest match errors from
affecting the process. DIF is set to the difference in match
error values between adjacent values k and k+1. If DIF is less
than or equal to DMIN, as may be determined at 1208, then
there is no step and STEP[j][k] is set to zero, as indicated at
1209. If DIF is greater than DMIN, however, then there is a
step. The value of the step may thus be saved in STEP[j][k]
and STEPCNTJj] may be incremented to count the steps in
the row, as indicated at 1210.

After sub-process 1207 completes, the number of detected
steps may be added to DIFAVE, as indicated at 1211.

DIFAVE may be divided by NUM to get the average num-
ber of detected steps in each row, as indicated at 1212. If
DIFAVE is greater then or equal to 4, as may be determined at
1213, then too many steps were detected to proceed. The step
detection threshold DMIN may be increased by 20%, as
indicated at 1214, and sub-processes 1206 and 1207 may be
repeated. DMIN may continue to be increased until DIFAVE
is less than 4.

If DIFAVE is less than 4, as may be determined at 1213, it
is then tested to be greater than 0.9. If the average number of
steps is less than 0.8, as may be determined at 1215, then there
are no detectable clusters and the process ends, as indicated at
1216.

If DIFAVE is greater than or equal to 0.8, as may be
determined at 1215, then there may be detectable clusters and
the process may continue. The array HIST]], initialized to
zero at 1217, may be used to count the number of detected
steps at each possible location in each row j. The size of the
array is NUM and all elements may be initialized to zero.

Sub-process 1218 may process each row of sorted match
errors. In the example, S1 is the last index in the row where a
step occurred and may be initialized to zero.

Sub-process 1218 may test each match error in row j. If
there is a detected step, the number of match errors since the
last step IND may be calculated. It is the difference between
the current index k and the index of the last step. IND may be
used to index HIST][| and that element may be incremented.
S1 may then be set to current index k.

US 9,194,892 B2

17

After sub-process 1218 completes, the values in HISTJ |
typically represent the distribution of number of error values
between detected steps. Sub-process 1220 may be used to
determine whether this distribution is representative of clus-
ters.

The array SNUM][| may be used to store the number of
match errors between detected steps. This is equivalent to the
number of instances in a cluster since each error value corre-
sponds to an instance that is very similar to the other instances
between detected steps. Since no more than 5 clusters are
considered, there are 5 elements in SNUM] | that are all
initialized to zero. The variable k may be used to index
SNUM]] and count the number of clusters.

Each element of HIST[j] may be checked at 1221 to deter-
mine whether there is a cluster that contains j elements. If
HISTTYj] is greater than 90% of the total number of instances,
then there are clusters, the index k may be incremented, and
SNUMJk]| may be set to j, the number of instances in the
cluster, as indicated at 1222.

After sub-process 1220 completes, the value of k may be
tested, as indicated at 1223. If k=0, there are no clusters and
the CLUSTER ANALYSIS process is complete, as indicated
at 1224.

There are at least two clusters if k is greater than zero. It is
possible that two (or more) clusters have exactly the same
number of instances. In this case, the value of one element in
HIST]] will be greater than NUM. The variable NC may be
used to determine the number of clusters. NC may be first set
to one plus the number of non-zero elements of SNUM] |, as
indicated at 1225.

Sub-process 1226 may then use each non-zero element j of
SNUM]J] to index to the value of HIST[SNUM][j]]. If this
value is significantly greater than NUM, then many rows in
STEP[][] have the same number of match errors between two
or more detected steps. This means that two or more clusters
have exactly the same number of instances. If HIST[SNUM
[711 is greater then 1.8*NUM, as indicated at 1227, then NC
may be increased by the fix value (e.g., truncated to an inte-
ger) of HIST[SNUM]Jj])/(0.9*NUM), as indicated at 1228.
After sub-process 1226 completes, NC is equal to the number
of clusters and, therefore, the number of devices represented
by the group of instances. NC-1 new devices may then be
created, as indicated at 1229.

Sub-process 1230 may be used to qualify instances with
the new set of devices. An instance is generally considered
qualified if all the spacing between its detected steps
in STEP[][] match the spacing specified in SNUM]]. The
order of the spacings will be different for instances that are
associated with different devices. All instances that have the
same spacings are associated with the same device.

The first qualified instance QINST may be used to deter-
mine the initial association. The instances that have the small-
est match (e.g., those before the first detected step) may be
associated with the first device. Instances between the first
detected step and the second detected step (or the remaining
instances up to the (Num—NUM/20) instance) may be asso-
ciated with the second device. The remaining 5% of instances
are not initially associated with any device. If there are addi-
tional detected steps, the instances between the steps are
associated with the next sequential device.

After the initial association of instances to devices using
the sorted match errors of the first qualified instance, each
other qualified instance is checked to verify it produces the
same associations for all instances. If there is a discrepancy in
any association, the instance is disassociated from the device.
After the association process, a well qualified group of
instances are associated with each of the NC devices.

20

30

40

45

50

60

18

The association process may use the runtimes and energy
associated with each instance to determine the total runtime,
total energy, and average power represented by the NC
devices.

A FIND BEST SEED INSTANCE process may be per-
formed for each NC device to find the best seed device.

The value of DEVMIN may adjust for each NC device.
This is typically determined using the sorted match errors for
the seed instance of the device. DEVMIN is set to average of
the match error just before the first detected step and the
match error just after the step.

After sub-process 1230 completes, most of the instances
are now associated with one of the NC devices. Sub-process
1231 then process the unassociated instances. The match
error between each unassociated instances and each device
may be determined, as indicated at 1232. If a match is found,
then the instance may be assigned to the matching device, as
indicated at 1233. If no match is found, a new device may be
created using the unassociated instance as the seed instance,
as indicated at 1234.

FIG. 13 is a flow diagram of a CONSOLIDATION
ANALYSIS process in accordance with certain embodiments
of the disclosed technology. This process may be used to
increase the value of DEVMIN] | to make matching instances
to a device less selective. This is often beneficial for devices
that naturally produce highly variable time traces. When
DEVMIN] | is too selective, for example, the match error
between a new instance created by the device and its seed
instance frequently exceeds the device’s match threshold
DEVMIN][]. A new device may be created using the
unmatched instance as the seed instance. Several new devices
may be needed to represent the full variability of instances
produced by the device. The CONSOLIDATION ANALYSIS
process searches for similar devices and, if found, consoli-
dates the devices to a single device and increases the value of
its DEVMIN]].

The first step of the CONSOLIDATION ANALYSIS pro-
cess is to fill array INSTNJ | with the NUM instance numbers
associated with device DEV, as indicated at 1301.

The array MERR][| may be filled with the match error
values between each instance associated with device DEV
and the device DEV, as indicated by 1302. These values may
then be sorted from smallest to largest.

The variable TDEVMIN may be used to determine the new
value of DEVMIN|[DEV] and is initialized to zero at 1303.

Sub-process 1304 may process each device j to determine
whether it should be consolidated with device DEV. The first
step of the process in the example includes setting the variable
SEED2 to the seed instance number of the device j, as indi-
cated at 1305. Then TERR is set to the match error values
between the seed instances of device j and device DEV, as
indicated at 1305. TERR may then be compared to twice the
value of DEVMIN|[DEV], as indicated at 1306. If the match
error is more than 2*DEVMIN[DEV], then device j is not a
candidate for consolidation.

If TERR is less than 2*DEVMIN[DEV] then device j is a
candidate for consolidations. The array INSTN2[| may be
filled with the instance numbers associated with device j, as
indicated at 1308. In the example, NUM2 is the number of
devices associated with device j.

The array MERR2[| may be filled with the match error
values between each instance associated with dev j and device
DEV, as indicated at 1309. The match error values in
MERRZ2] | may then be sorted, as indicated at 1310.

In the example, sub-process 1311 may be used to find the
largest change in sequential error values for five differences at
the end of MERR] | and for five differences at the beginning

US 9,194,892 B2

19
of MERR2[|. After sub-process 1311 completes, variable E1
is the largest difference between the MERR] | samples and E2
is the largest difference between the MERR2[| samples.

If'the instances in INSTN]] and INSTN2[| were produced
by the same device, the difference between the last error value
in MEER] | and the first error value in MEER2]] should be
about the same as the nearby differences, and not much larger
than the largest differences. The difference MERR2[[1]-
MERR[NUM] is compared to 1.2 of the maximum of E1 and
E2, as indicated at 1312. If the difference is larger, then there
is a significant step in error values and the instances in
INSTN] | were likely produced by a different device than the
instances in INSTN2J .

If the difference is less, then the instances were probably
produced by the same device and the creation of the separate
devices DEV and j is an artifact of DEVMIN[DEV] set to
value that is too small. Therefore, device j should be consoli-
dated into DEV. Accordingly, all of the instances in
INSTN2[] may be associated with device DEV and device j
may be deleted, as indicated at 1313.

In the example, the value of MERR2[NUM?2] is the largest
match error value between DEV and all instances associated
with device j.

If MERR2[NUM?] is greater than TDEVMIN, as may be
determined at 1314, then TDEVMIN may be set to the value
of MERR2[NUM?2], as indicated at 1315.

At least one device was consolidated if TDEVMIN is
greater than zero, a determination that may be made at 1316.
If there was consolidation, then DEVMIN[DEV] may be set
to 105% of the TDEVMIN, as indicated at 1317. Then, a
FIND BEST SEED INSTANCE process may process the
larger group of instances now associated with DEV to find the
best seed instance, as indicated at 1318.

Having described and illustrated the principles of the
invention with reference to illustrated embodiments, it will be
recognized that the illustrated embodiments may be modified
in arrangement and detail without departing from such prin-
ciples, and may be combined in any desired manner. And
although the foregoing discussion has focused on particular
embodiments, other configurations are contemplated. In par-
ticular, even though expressions such as “according to an
embodiment of the invention” or the like are used herein,
these phrases are meant to generally reference embodiment
possibilities, and are not intended to limit the invention to
particular embodiment configurations. As used herein, these
terms may reference the same or different embodiments that
are combinable into other embodiments.

Consequently, in view of the wide variety of permutations
to the embodiments described herein, this detailed descrip-
tion and accompanying material is intended to be illustrative
only, and should not be taken as limiting the scope of the
invention. What is claimed as the invention, therefore, is all
such modifications as may come within the scope and spirit of
the following claims and equivalents thereto.

What is claimed is:
1. A method for identitying an electrical device coupled to
a power supply, comprising:

detecting a positive transition in a time trace disaggrega-
tion process (TTDP);

creating a new instance j;

capturing a positive transition data block for the instance j;

creating a time trace feature description for at least one of
the following: power, reactive power, and current;

matching the instance j to a device type by performing a
quick match based on at least one of a plurality of quick
match parameters;

10

15

20

25

30

35

40

45

50

55

60

65

20

responsive to a positive identification based on the quick
match, performing a match based on said feature
description; and

responsive to positive identification, assigning the instance

j to the device type.

2. The method of claim 1, wherein the positive transition
data block comprises samples for at least one of the follow-
ing: power, reactive power, and current.

3. The method of claim 1, further comprising determining
values of at least one of power, reactive power, and current for
samples immediately before the positive transition.

4. The method of claim 1, wherein the matching further
comprises:

performing a CalculateMatchError(j,k) function to deter-

mine an error value TERR that is a measure of similarity
between the instance j and a device k; and

based on a result of the CalculateMatchError(j,k) function,

creating a new device using the instance j or assigning
the instance j to the device k.

5. The method of claim 4, wherein performing the Calcu-
lateMatchError(j,k) function comprises determining whether
the value of TERR is less than a threshold match error value
DEVNIM][j] for the device k.

6. The method of claim 5, further comprising normalizing
TERR by dividing TERR by DEVMIN][k] and then compar-
ing the result to ERRMIN.

7. The method of claim 1, wherein the plurality of quick
match parameters comprises at least one of the following:
average power during a predefined number of samples, aver-
age reactive power during a predefined number of samples,
and average current during a predefined number of samples.

8. The method of claim 7, wherein the plurality of quick
match parameters further comprises at least one of the fol-
lowing: generic device type, service leg, and instance code.

9. The method of claim 1, wherein the matching further
comprises performing a MatchlnstanceToGenericDevice
(j.k) function, the Matchlnstance ToGenericDevice (j,k) com-
prising testing a MAXPOW parameter to determine whether
the MAXPOW parameter is within a range of a MAXPOW
maximum limit and a MAXPOW minimum limit.

10. The method of claim 9, wherein performing the Match-
InstanceToGenericDevice (j,k) function further comprises
testing a MINPOW parameter to determine whether the MIN-
POW parameter is within a range of a MINPOW maximum
limit and a MINPOW minimum limit.

11. The method of claim 10, wherein performing the
MatchInstanceToGenericDevice (j,k) function further com-
prises testing a POWERFACTORI parameter to determine
whether the POWERFACTOR1 parameter is within a range
of a POWERFACTOR1 maximum limit and a POWERFAC-
TOR1 minimum limit.

12. The method of claim 11, wherein performing the
MatchInstanceToGenericDevice (j,k) function further com-
prises testing a PEAKCNT parameter to determine whether
the PEAKCNT parameter is within a range of a PEAKCNT
maximum limit and a PEAKCNT minimum limit.

13. The method of claim 12, wherein performing the
MatchInstanceToGenericDevice (j,k) function further com-
prises testing a STEPCNT parameter to determine whether
the STEPCNT parameter is within a range of a STEPCNT
maximum limit and a STEPCNT minimum limit.

14. The method of claim 1, wherein the matching further
comprises performing a CalulateMatchError(j, k) function,
the CalulateMatchError(j, k) function comprising:

sequentially selecting all feature triples jj of the feature

description of instance j; and

US 9,194,892 B2

21

determining whether each of the feature triples jj are

marked as used.

15. The method of claim 14, wherein performing the Calu-
lateMatchError(j, k) function further comprises:

sequentially selecting all feature triples kk of the feature

description of device k; and

determining whether each of the features kk are marked as

used.

16. The method of claim 15, further comprising using a
FeatureMatch(jj, kk) function to compare the feature triples jj
of instance j to the feature triples kk of device k.

17. The method of claim 16, further comprising using a
MisFeatureMatch(jj) function to compute the error contribu-
tion of each unused feature triple jj of instance j.

18. The method of claim 1, further comprising performing
a CLUSTER ANALYSIS process to determine whether a
device match threshold DEVMIN]] is too large such that two
or more different devices are combined into a single device.

5

15

22

19. The method of claim 18, further comprising:
creating new devices so that there is a separate device for
each cluster of instances found by the CLUSTER
ANALYSIS process; and
selecting a value for the device match threshold DEVMIN[
] for each separate device to provide sufficient selectivity
so that new instances are properly matched to one of the
separate devices.
20. The method of claim 1, further comprising performing
a CONSOLIDATION ANALYSIS process to determine if
there are multiple devices that can be consolidated.
21. The method of claim 20, further comprising:
associating the instances of multiple devices with a single
device based on a result of the CONSOLIDATION
ANALYSIS process; and
adjusting the single device match threshold DEVMIN] | to
ensure that new instances are correctly matched to the
single device.

